Thread Safety with Phaser, StampedLock and VarHandle

Thread Safety
~———with Phaser,

StampedLock

and VarHandle

/ Dr Heinz M. Kabutz

Last Updated: 2020-11-24

@) Javaspecialists.eu
© 2020 - Heinz Max Kabutz - All Rights Reserved L

Thread Safety with Phaser, StampedLock and VarHandle

<~ Tweet

~ Heinz Kabutz . g
2; @i;nzk:lbt::z h For the easny amused
In #Java, which of these mechanisms of waiting is
compatible with fibers from Project Loom?

wait(); 24%
Thread.sleep(...); 18%
Thread.onSpinWait(); 39%
for(;;); 18%

98 votes - 21 hours left

o
5

.a/

Thread Safety with Phaser, StampedLock and VarHandle

Phasers

® Allows threads to coordinate by phases

— More flexible than CountDownLatch and CyclicBarrier

® Registration

— Number of parties registered may vary over time
e Same as countin CountDownLatch, parties in CyclicBarrier
e A party can register/deregister itself at any time

® ManagedBlocker

— Can be used in the ForkJoinPool

Thread Safety with Phaser, StampedLock and VarHandle

Demo of
- Cojoining
Approaches

ithub.com/kabutz/modern-synchronizers
branch talks-20-11-26 JokerConf

FIVISREC NS eu

Thread Safety with Phaser, StampedLock and VarHandle

Tiered Phasers

® Tree of phasers can reduce contention

® A bit complicated to understand (at least for me)

— Parent does not know what children it has

— When a child is added, parent # parties increases by 1
* If child's registered parties > 0

— Once child arrived parties == 0, one party automatically
arrives at parent

— With arriveAndAwaitAdvance(), we wait for all parties in tree

* Thus the parties in the current phaser and in the parent have
to arrive

Thread Safety with Phaser, StampedLock and VarHandle

Tiered Phasers

® Parent parties incremented when child has parties

Phaser root = new Phaser(3);
Phaser cl = new Phaser(root, 4);
Phaser c2 = new Phaser(root, 5);
Phaser c3 = new Phaser(c2, 0);
System.out.println(c3);
System.out.println(c2);
System.out.println(cl);
System.out.println(root);

® outputs
.U.C.Phaser[phase = @ parties = @ arrived = 0] (c3)
.U.C.Phaser[phase = @ parties = 5 arrived = 0] (c2)
.U.C.Phaser[phase = @ parties = 4 arrived = 0] (c1)
.U.C.Phaser([phase = @ parties = 5 arrived = 0] (root)

Thread Safety with Phaser, StampedLock and VarHandle

Phaser "root" is Created With 3 Parties

Thread Safety with Phaser, StampedLock and VarHandle

Phaser "c1" Is Created With 4 Parties

Thread Safety with Phaser, StampedLock and VarHandle

Phaser "c2" Is created with 3 parties

. Agam INCreases partles {
1n root" phaser

Thread Safety with Phaser, StampedLock and VarHandle

Phaser "c3" Is created with O parties

parties in "c2" |
phaser, because |
- c3's parties=—=0 |

Thread Safety with Phaser, StampedLock and VarHandle

ManagedbBlocker

® ForkJoinPool makes more threads when blocked

— ForkJoinPool is configured with desired parallelism

® Uses in the JDK

— Java 7: Phaser
— Java 8: CompletableFuture
— Java 9: Process, SubmissionPublisher

— Java 14: AbstractQueuedSynchronizer
e ReentrantLock, ReentrantReadWriteLock, CountDownLatch,
Semaphore

— Loom: LinkedTransferQueue, SynchronousQueue,
Selectorimpl

Thread Safety with Phaser, StampedLock and VarHandle

For All You Wonderful Programmers

® Daily JGym.lO 8 minute Java microlesson

— 8am UTC
— https://jgym.io/jokerconf2020

Thread Safety with Phaser, StampedLock and VarHandle

- StampedLock

@ Jovaspeciglists.eu

Thread Safety with Phaser, StampedLock and VarHandle

What is StampedLock?

® Java 8 synchronizer

® Allows optimistic reads

— ReentrantReadWriteLock only has pessimistic reads

® Not reentrant

— This is not a feature

® Use to enforce invariants across multiple fields

— For simple classes, synchronized/volatile is easier and faster

® Can split locking and unlocking between threads

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Exclusive Lock (write)

public class StampedLock {
long writelLock() // never returns @, might block

// new write stamp 1f successful; otherwise 0
long tryConvertToWriteLock(long stamp)

void unlockWrite(long stamp) // needs write stamp

// and a bunch of other methods left out for brevity

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Non-Exclusive Lock (read)

public class StampedLock { // continued ...
long readLock() // never returns 0, might block

// new read stamp 1if successful; otherwise @
long tryConvertToReadLock(long stamp)

void unlockRead(long stamp) // needs read stamp

vold unlock(long stamp) // unlocks read or write

Thread Safety with Phaser, StampedLock and VarHandle

Optimistic Non-Exclusive Read (No Lock)

public class StampedLock { // continued ...
// could return @ if a write stamp has been issued
long tryOptimisticRead()

// return true 1if stamp was non-zero and no write
// lock has been requested by another thread since
// the call to tryOptimisticRead()

boolean validate(long stamp)

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState2 = state?2, ... etc.;
if (!'sl.validate(stamp)) {
stamp = sl.readlLock();

try {
currentStatel = statel;
currentState2 = state?2, ... etc.;
} finally {
sl.unlockRead(stamp);
}

}

return process(currentStatel, currentState2);

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() { - We get a
long stamp = sl.tryOptimisticRead();
double currentStatel = statel, stamp 10
currentState2 = state2, ... et| use for the
1f (!Sl.ValidatE(Stamp)) { | Optlmlstlc
stamp = sl.readLock(); d
tl"y { re_a
currentStatel = statel;
currentState2 = state?2, ... etc.;
} finally {
sl.unlockRead(stamp);
}
}

return process(currentStatel, currentState2);

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState2 = state?2, ... etc.;

1f (!sl.validate(stamp)) { =N
stamp = sl.readLock(); We read tield

try { i . - values 1nto
currentStatel = statel;
currentState2 = state2?,!l Tl_o_cal fields
} finally {
sl.unlockRead(stamp);

h
¥

return process(currentStatel, currentState2);

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState2 = state?2, ... etc.;
if (!'sl.validate(stamp)) {
stamp = sl.readLock();

Next we validate

try { J .
currentStatel = state] that no write locks
currentsStateZ = stated have been issued

} finally { . Vo
sl.unlockRead(stamp); | in the mear}whlle

¥

¥

return process(currentStatel, currentState2);

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {

long stamp = sl.tryOptimist: *
double currentStatel = stat} If they have', +
currentState2 = stat(then we don't

if (!lsl.validate(stamp)) 4 | know if our
stamp = sl.readLock(); - state is clean

try {
currentStatel = statel;
currentState2 = state2, ... etc.;
+ finally { - ~ 3
sl.unlockRead(stamp); 'Thus we acquire a|
) ; pessimistic read
return process(currentStatel, | lock aI.1d read the
} ~ state 1nto local
fields

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState2 = state?2, ... etc.;
if (!'sl.validate(stamp)) {
stamp = sl.readlLock();

try {
currentStatel = statel;
currentState2 = state?2, ... etc.;
} finally {
sl.unlockRead(stamp);
}

}

return process(currentStatel, currentState2);

Thread Safety with Phaser, StampedLock and VarHandle

Sifis the Cretan Crocodile (RIP)

® Poor critter was
roaming around
Crete

— Pet grew too big
— Or hungry

® Eventually died
In our cold
winter months

Thread Safety with Phaser, StampedLock and VarHandle

Introducing the Position Class

® When moving from (0,0) to (5,5), we want to travel In
a diagonal line

— Don’t want to ever see our position at (0,5) or especially (5,0)

| (5!5)

Thread Safety with Phaser, StampedLock and VarHandle

I Refactoring
Position

ithub.com/kabutz/modern-synchronizers
branch talks-20-11-26 JokerConf

@ Javaspecialists.eu

java Training

Thread Safety with Phaser, StampedLock and VarHandle

Newer Ildiom for Optimistic Read

public double distanceFromOrigin() {
long stamp = sl.tryOptimisticRead();
try {
retryHoldingLock: for (;; stamp = sl.readLock()) {
if (stamp == OL) continue retryHoldinglLock;
// possibly racy reads
double currentStatel = statel;
double currentState2 = state2; // etc.
if (!'sl.validate(stamp))
continue retryHoldingLock;

return process(currentStatel, currentState2);

}
} finally {

if (StampedLock.isReadlLockStamp(stamp))
sl.unlockRead(stamp);

Thread Safety with Phaser, StampedLock and VarHandle

Truly Optimistic, Optimistic Read

public double distanceFromOrigin() {
long stamp = sl.tryOptimisticRead();
try {
retryHoldlngLock for (,, stamp = sl. readLock()) {

HHH — '—— A% ——————7—='=————— efl%
// p0551bly racy reads

double currentStatel = statel;
double currentState2 = state2; // etc.
if (!'sl.validate(stamp))

continue retryHoldingLock;

return process(currentStatel, currentState2);

}
} finally {

if (StampedLock.isReadlLockStamp(stamp))
sl.unlockRead(stamp);

Thread Safety with Phaser, StampedLock and VarHandle

Truly Optimistic, Optimistic Read

public double distanceFromOrigin() {
long stamp = sl.tryOptimisticRead();
try {
retryHoldingLock: for (;; stamp = sl.readLock()) {
// possibly racy reads
double currentStatel = statel,;
double currentState2 = state2; // etc.
if (!'sl.validate(stamp))
continue retryHoldingLock;

return process(currentStatel, currentState2);

}
} finally {

if (StampedLock.isReadlLockStamp(stamp))
sl.unlockRead(stamp);

Thread Safety with Phaser, StampedLock and VarHandle

R Refactoring
Position x 2

ithub.com/kabutz/modern-synchronizers
branch talks-20-11-26 JokerConf

@ Javaspecialists.eu

.a/

.Auf

SN

e

r applicat

10N run even

Thread Safety with Phaser, StampedLock and VarHandle

Java 9 VarHandles Instead of Unsafe

® VarHandles remove biggest temptation for Unsafe

— As fast as Unsafe

— Make sure VarHandle fields are static final

® Can read and write fields of class

— getVolatile() / setVolatile()

— getAcquire() / setRelease()

— getOpaque() / setOpaque()

— get() / set() - plain

— compareAndSet(), returning boolean

— compareAndExchange(), returning found value

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring
Position to
VarHandle

ithub.com/kabutz/modern-synchronizers
branch talks-20-11-26 JokerConf

FIVISREC NS eu

Thread Safety with Phaser, StampedLock and VarHandle

compareAndExchange()

® Direct support for real compare-and-swap

— Before it was compare-and-set

® Supported by Atomic classes and VarHandles

® Eliminates one volatile read - might be faster

public void move(int deltaX, int deltaY) {

int[] current, next = new 1nt[2], swapResult = xy;

do {
current
next [0]
next[1]

}

while ((swapResult = (int[]) XY.compareAndExchange(

this, current, next)) != current);

swapResult;
current[@] + deltaX;
current[1] + deltaY;

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring
Position to
VarHandle x 2

ithub.com/kabutz/modern-synchronizers
branch talks-20-11-26 JokerConf

FIVISREC NS eu

Thread Safety with Phaser, StampedLock and VarHandle

Question Time
® Remember: https://jgym.io/jokerconf2020

® Twitter: @heinzkabutz
® Newsletter: https://www.javaspecialists.eu

® Email: heinz@javaspecialists.eu

